
REAL-WORLD IMPLEMENTATION AND SECURITY ANALYSIS OF

STRUCTURED ENCRYPTION ON AMAZON WEB SERVICES

Lim Li Xin Jed, Song Yiyang, Ruth Ng Ii-Yung, and Seah Meng Yong Ryan

1 NUS High School of Mathematics and Science
2 Raffles Instituition

3 DSO National Laboratories and Agency for Science, Technology and Research (A*STAR)
4 McGill University and DSO National Laboratories

Abstract. In this project, we build a structured encryption system for SQL databases which supports SELECT

and JOIN queries. This system is implemented on Amazon Web Services. Using our implementation, we

investigate the leakage produced by our system and attempt to attack it using leakage abuse attacks both on

real-world data and synthetic data. Using the full spectrum of attacks (with full or partial information, and

single or double-column setups), we rigorously show that our system is more resilient and secure than past

schemes.

1 Introduction

Storage of sensitive data such as medical records is challenging and will often require in-
house servers to store the data as it may not be possible to trust 3rd-party cloud servers not to
look at the data. However, such servers are expensive and can be difficult to maintain.

Encryption of the whole database is one way to ensure confidentiality by hiding all useful
information about the data. However, this means that when a query needs to be made, the whole
database must be decrypted which is time-consuming.

Structured encryption schemes provide a solution to these problems. Structured encryption
enables secure encryption of data in any data structure while still allowing queries to be made
on the encrypted data. Such schemes have been written for a wide variety of data structures
such as multi-maps [2, 9], matrices [4], graphs [4] and SQL databases [2, 3, 5–7, 10].

Nevertheless, as a trade-off, some information about the data such as the number of rows
in a database returned by a query will be leaked, known as the leakage profile. This leakage
profile is what leakage abuse attacks (LAAs) seek to exploit to gain information about the
data. Common and usually unavoidable information that is leaked is the number of rows in the
response. This can be exploited by using auxiliary data (see Section 3) to identify some values
in the column. Other information such as the order of rows has been exploited too [8].

This paper reports the real-world implementation and security analysis of a structured en-
cryption system for SQL databases. In Section 2, we construct this system for SQL databases
supporting SELECT and JOIN queries and explain our implementation on Amazon Web Ser-
vices. In Section 3, we examine the leakage profile of our system, present some LAAs and
explain their limitations. In Section 4, we run experiments on real-world and synthetic data to
demonstrate the attacks.

2 Structured Encryption

Now, we outline the structured encryption scheme that we have built for SQL databases.
Refer to Appendix A for a formal and more detailed definition. In order to answer queries
instantaneously, we first precompute every SELECT and JOIN query on a given set of table(s)
in O(N) and O(N2) time respectively. In this report, in all complexity analysis, n is the number
of unique ciphertexts and N is the number of rows in the table. Future work could implement
better JOIN techniques [3], or come up with better ones, in order to reduce the time complexity
and leakage (Section 3). From this, we construct a reverse-index multimap, N, which maps
each query to the row indexes. Then, we construct another multimap, M, that maps each row
index to the contents of that row. Finally, we encrypt M with response-hiding encryption and N
with response-revealing encryption. The cryptographic primitives used were the Cryptographic
Hash Function SHA-256 for encrypting labels and the Symmetric Encryption Scheme AES-
CTR-256 for encrypting values.

2.1 Scheme Implementation and Benchmarking

We implemented the above-mentioned scheme, using Python and Amazon Web Services
(AWS). We initialised an AWS ec2 Ubuntu instance to act as the server, while the client was our
own computers. In order to communicate between client and server, we used TCP via Python’s
socket module. To send the multimaps over, we used Python’s pickle module, converted them
into raw bytes and sent it via socket. pycryptodome was used for all cryptographic functions.
We benchmarked our system against 2 tables of 1000 rows each, and the results show that our
system is rather efficient. The high initialisation time of 28s is mainly due to precomputing
JOINs, which scales proportional to O(N2). In our implementation, we used naive row by row
comparisons, so one area of future work could be to implement a “sort and compare” scheme
with time complexity O(N logN + number of rows in JOIN output), which is normally better
than O(N2) for real-world data. Processing one SELECT and JOIN query took 0.0384s and
1.15s respectively, which is acceptably fast for a real-world application.

3 Leakage Abuse Attacks

Now, we will discuss the leakage profile of our system and how it can be abused to uncover
information about the data. The motivation is to measure the security of our system by observ-
ing how well it stands up to these attacks. In this section, we will also refer to “ciphertexts”.
These are not the encrypted rows but rather refer to the encrypted values that we know certain
rows contain. In LAAs, we seek to obtain the plaintexts associated with these encrypted values.

LEAKAGE PROFILE The following information about the data is leaked by the system.

– Total Number of Rows can be inferred from size of client’s message during initialisation.
– Length of Longest Row can be inferred from the longest entry in M during initialisation.

2

– Query Uniqueness Pattern can be inferred from the unique search token during query.
– Row Access Pattern can be inferred from which rows of M were accessed during query.
– Number of Rows in Query can be inferred from size of server’s response during query.

We note that this leakage profile is in fact smaller than past schemes such as CryptDB by
Popa et al. [11]. The number of rows in a query is only available when the query is made unlike
in past schemes where the number of rows in a query is available even before any queries are
made. Hence, our scheme is much more secure and resilient.

QUERY INFORMATION Using this data, we will first attempt to extract information about the
query that was asked such as the query type (SELECT or JOIN) and which column and table
the query was performed on. This information is necessary to know which attacks should be
applied on the data. However, there is no sure-fire way to determine the type of query every
time, these methods are just heuristics. We provide a brief summary of methods, the details are
found in Appendix B.

– Parity of number of rows returned. JOINs always return an even number of rows.
– Uniqueness of rows returned. JOINs almost always return multiple copies of a row.
– Number of rows returned for JOIN. Auxiliary data can be used to guess the columns the
JOIN was performed on.

3.1 Overview of LAAs

The end goal of an LAA is: given some ciphertexts and some auxiliary plaintext data,
output a mapping from each plaintext to one ciphertext. Specifically, we work with ciphertext
frequencies and the auxiliary data is a probability distribution of plaintexts on a column of
the same type, obtained through looking at other similar but open-source tables (for example,
auxiliary data of the Ohio Voter Registry could be the Florida Voter Registry). We call an LAA
“optimal” when the mapping it outputs has the highest probability of being the correct mapping
(elaborated later in each LAA). There are four scenarios we work with: Single/Double Column,
Complete/Incomplete. Single Column refers to SELECT queries, while Double Column refers
to JOIN queries. Complete means all relevant ciphertext equality patterns in the column(s) are
known to an adversary, while Incomplete means there are some remaining ciphertexts that an
adversary does not know whether they are equivalent to one another. Complete/Incomplete
scenarios arise because we are using non-deterministic encryption, so the same plaintext will
be mapped to different ciphertexts each time it is encrypted. Table 1 summarises the relevant
information on the LAAs. c0, d0 refer to the number of ciphertexts not returned in the JOIN

query in each column, while each ai, ci (respectively bi, di) refer to a plaintext probability,
ciphertext frequency from column 1 (respectively 2) respectively. We will assume in all our
LAAs that the adversary knows what c0 and d0 are (one way of obtaining this knowledge is via
observing past Complete queries made on different columns, but in the same table).

3

Single
Complete

Single
Incomplete

Double
Complete

Double
Incomplete

Input (auxiliary) {a1..an} {a1..an} {a1..an}, {b1..bn} {a1..an}, {b1..bn}
Input (ciphertext) {c1..cn} {c0..cm} {c1..cn}, {d1..dn} {c0..cm}, {d0..dm}
Output f : [1, n] 7→ [1, n] f : [1, n] 7→ [0,m] f : [1, n] 7→ [1, n] f : [1, n] 7→ [1,m+ 2]

Optimality Optimal Optimal Optimal Heuristic, NP-Hard

Condition All attributes
SELECTed

Some attributes not
SELECTed

All rows returned in
JOIN

Some rows not returned
in JOIN

Single Column Double Column
Complete Frequency Analysis Graph Matching

Incomplete Dynamic Programming Probability Estimation
Gradient Descent (Single- and Multi-step)
Genetic Algorithm

Table 1. LAA scenarios (top) and attacks for each scenario (bottom). Note that for Incomplete scenarios, m < n.

3.2 LAA Implementation and Setup

In Figure 1, our adversary as previously mentioned is a man-in-the-middle adversary and
sniffs packets exchanged by the AWS server and client, which we implemented with Wireshark
and pyshark. The adversary is able to see all communications between the server and client,
including the database initialisation, making it effectively equivalent to a server adversary.

Fig. 1. A diagram of our experimental setup

For every attack, we ran it on 1000 rows on the system we implemented, together with
Wireshark as a proof-of-concept. Then we simulated larger scale attacks on 1 million rows on
leakage computed directly from the raw data. For Single Column Complete, we used the Ohio
(ciphertext) and Florida (auxiliary) Voter Registry and the 2018 (ciphertext) and 2019 (aux-
iliary) HCUP NIS as our datasets. For the other scenarios, we used synthetic data modelled

4

after realistic data distributions (the Zipfian distribution). Details on data generation are found
in Appendix C. For Incomplete scenarios, 10% of the types of ciphertexts were removed from
the column(s) by unweighted random sampling. Future work could explore different percent-
ages of ciphertexts removed and different methods for sampling removed ciphertexts, such as
random sampling weighted by frequency.

Next, we will provide a brief summary of the various LAAs we came up with and im-
plemented. We mention only the key intuition; for more detailed explanations, sub-algorithms
used, proofs and pseudocode, refer to Appendix D.

3.3 Single Column, Complete

FREQUENCY ANALYSIS This attack is run when all possible SELECT queries have been run
on a column. Checking that this condition is satisfied requires the total length of the table that
the query was run on. This can be obtained if there is only 1 table by looking at the length of M.
Such conditions are likely to be satisfied by columns with a smaller number of possible values
such as gender or race. The optimal mapping simply maps the highest ai to the highest ci, the
second highest ai to the second highest ci and so on. The time complexity is O(n log n).

3.4 Single Column, Incomplete

DYNAMIC PROGRAMMING The intuition remains the same as frequency analysis. Let “largest”
refer to the highest probability or the highest frequency. We consider the largest unmapped
plaintext. We either map it to the largest unmapped ciphertext, or to c0. Then, we consider the
next largest unmapped plaintext and ciphertext. This constitutes a smaller but identical sub-
problem, thus we use dynamic programming to solve this. When all ciphertexts are mapped, all
remaining plaintexts are mapped to c0. The time complexity is O(nm10ϵ), where ϵ = number
of decimal places the probabilities are rounded to. In our experiments, ϵ = 3.

3.5 Double Column, Complete

GRAPH MATCHING Now, we consider the scenario of a JOIN query where all the rows in each
table are returned at least once in the JOIN query. To check that this condition is satisfied, there
can be at most 2 tables in the database. The first step is to convert the pairs of rows in the leakage
into ciphertext frequencies. Since Pr[f] =

∏
i a

cf(i)
i b

df(i)
i = exp

(∑
i cf(i) log ai + df(i) log bi

)
,

we represent each summand as an edge in a complete bipartite graph, then run Hungarian
Algorithm to compute an optimal matching in O(n3). By the Hungarian Algorithm [1] and the
monotonicity of log, this LAA is optimal too.

3.6 Double Column, Incomplete

Now, we will discuss the scenario of JOIN queries where c0, d0 > 0 (i.e. there are rows in
either table not included in the JOIN). We define n as the number of plaintexts and m as the

5

number of revealed ciphertexts. In addition, for a plaintext i that maps to c0 or d0, f(i) = m+1

or f(i) = m+ 2 respectively. In this scenario, the probability function for a mapping f is

Pr[f] =

 ∏
f(i)≤m

a
cf(i)
i b

df(i)
i

 ∑
f(i)=m+1

ai

c0 ∑
f(i)=m+2

bi

d0

This probability can be broken into 2 parts. The first multiplicand (representing plaintexts
in the JOIN, call it set X) can be maximised using the Hungarian Algorithm. The second
and third multiplicands (representing those not in the JOIN, call it set Y) can be maximised
using a new algorithm, the Partition Optimisation Algorithm. Thus, if we can determine which
plaintexts are in the JOIN and which are not, we can solve each portion optimally. However, we
do not believe that we can do so optimally, because the Double Column, Incomplete scenario
is NP-hard 1. Next, we present 3 LAAs to tackle this problem.

PROBABILITY ESTIMATION One possible method is to estimate the probability that a given
plaintext i is in Y . This probability Pr[i] is given by

Pr[i] = (1− ai)
N1 + (1− bi)

N2 − (1− ai)
N1(1− bi)

N2

where N1, N2 are the total number of rows in column 1 and 2 respectively. Since we know there
are n−m plaintexts in Y , we can take the top n−m plaintexts with the highest Pr[i] and place
them in Y . However, this is suboptimal since this assumes the probability of a given plaintext i
being in Y is independent of any other plaintext. Of course, this is not true, but this assumption
is necessary to ensure the algorithm is efficient. We also ran this attack without assumption on
knowledge of c0 and d0, i.e. assuming c0 = d0.

GRADIENT DESCENT Since we know that the Probability Estimation LAA is suboptimal, we
will now try and improve it by making small changes to the solutions and looking at what leads
to the greatest improvement in the probability. We start with a random mapping, then consider
all possible single-swaps of 2 individual plaintext mappings. We take the best swap and apply
it. This process is repeated until all swaps decrease Pr[f]. We also implemented a multi-step
version, where at each step, the algorithm can perform any number of non-overlapping swaps.
While gradient descent is intuitive, one pitfall is that it easily gets stuck in a local optimum.

GENETIC ALGORITHM To resolve this issue, we now take inspiration from natural selection
and attempt to use a genetic algorithm to solve this problem. We maintain a population of
several potential mappings. At each iteration, we randomly mutate them (via performing some
swaps) to spawn more mappings. Then, we pick some of the mappings with highest Pr[f], but
also keeping some poorer ones to maintain population diversity. The diversity is what increases
the likelihood of some mappings escaping a local optimum. Its potential to jump over local
optima is its key difference and improvement from Gradient Descent.

1 A proof of this is currently under submission which reduces the problem from Set Partition, known to be NP-complete.

6

4 Results

4.1 Overview

In order to characterise the performance of our attacks, we make use of v-score and r-score.
The v-score measures the proportion of ciphertexts that the attack correctly matched while the
r-score measures the proportion of rows that the attack correctly matched. These two measures
are different as each value has a different number of rows associated with it. For the Incomplete
scenarios, we only consider known ciphertext frequencies, i.e. we ignore c0 and d0. Our raw
results data and detailed formula for v- and r-scores are found in Appendix E.

In general, we noticed that our attacks performed better the lower the number of distinct
ciphertexts. Intuitively, this makes sense because a smaller number of ciphertexts means their
frequencies are more distinct, leading to the algorithms being able to distinguish them more
easily. The characteristic frequencies are also more visible after introducing random noise dur-
ing auxiliary data generation, due to their large inherent differences in value.

Another overall trend we observed is that performance worsens as the percentage error in-
troduced during generation of auxiliary data increases, which is expected because the auxiliary
data becomes a less and less accurate reflection of the actual data.

Overall, the runtime of the attacks were satisfactory, with the longest attack (genetic algo-
rithm) taking an hour to terminate. We consider this reasonable given that an adversary would
likely have sufficient time and that breaching databases should intuitively take some effort.

4.2 Overall Statistics

At a high level, all of our attacks worked. Refer to Table 2, where we used synthetic data
with 1 million rows and 50 ciphertexts, with e = 5% for auxiliary data generation. Table 2
shows the performances of each attack across all distribution pairs.

4.3 Single Column, Complete

The first attack that we ran is the frequency analysis attack. In accordance with the HCUP
Data Use Agreement, we ran the the HCUP datasets locally and the Florida and Ohio datasets
online between our computers and AWS. We now summarise our results.

For columns with a small number of possible values, the difference in frequencies between
ciphertexts is more prominent and thus easily picked up by frequency analysis, thus the attack
performs well. In fact, it obtained 100% accuracy for gender and race (HCUP) columns.

For columns with more varied values, the performance decreases significantly. It was only
able to correctly match the few most frequent values, along with some lucky guesses of less
frequent ones. Specifically, for the first name column, it correctly matched the most common
name “Michael” and a few other less common ones, thus explaining its low v-score of 0.239%
but a comparatively higher r-score of 8.46%.

7

Scenario LAA
Minimum Maximum Average

v-score r-score v-score r-score v-score r-score

SC Frequency Analysis 0.340 0.285 0.760 0.913 0.654 0.677

SI Dynamic Programming 0.338 0.333 0.693 0.776 0.471 0.561

DC Graph Matching 0.676 0.508 1.0 1.0 0.852 0.837

DI Probability Estimation 0.399 0.400 0.695 0.988 0.538 0.659

DI Probability Estimation, c0 = d0 0.211 0.203 0.646 0.979 0.472 0.613

DI Single-step Gradient Descent 0.439 0.447 0.991 0.998 0.782 0.772

DI Multi-step Gradient Descent 0.650 0.459 0.998 1.0 0.823 0.804

DI Genetic Algorithm 0.621 0.459 0.963 0.999 0.826 0.849

Table 2. Scenario, worst, best and average performance of each attack, taken over 10 runs on each distribution, when all attacks
are run on comparable synthetic data. S = Single Column, D = Double Column, C = Complete, I = Incomplete

However, the power of this attack cannot be underestimated: 8.46% of the 1048575 rows
of the 2018 HCUP dataset corresponds to more than 88700 entries, a scary amount of leaked
information if this attack was used for malicious intent.

4.4 Single Column, Incomplete

There was no significant trend to analyse, other than the expected decreasing performance
as error and number of ciphertext increases. Similar to the Single Column, Complete scenario,
we observed that compared to other distributions, Zipfian distributions have a lower v-score,
but a much higher r-score. Due to its nature, the most common ciphertexts are very frequent,
thus by only matching those correctly, a small proportion of values are correct but they make up
a large percentage of the rows. Overall, the performance is very commendable, with the worst
r-score being 1.1%, and several r-scores are even more than 50%. With a million rows in the
datasets, the prowess of this attack cannot be underestimated.

8

4.5 Double Column, Complete

Fig. 2. Bar graph showing the performance of the graph matching LAA for varying distributions with a 5% error in the auxiliary
data (left), and a graph of how much genetic algorithms outperform single-step gradient descent in v-score against number of
local optima (blue points are experimental results, orange line is the best-fit line) (right).

After running the graph matching LAA on the synthetic data, we can plot the performance
of the attack for various distributions in Figure 2 (left). We notice that inversely correlated dis-
tributions such as linear - inverse linear and uncorrelated distributions such as linear - random
linear perform better than correlated distributions such as linear - linear or Zipfian - Zipfian.
This is likely because for such distributions, ciphertexts that do not occur frequently in one
column are most likely paired with ciphertexts that occur frequently in the other column. This
reduces the impact of the error in the auxiliary data since there will be a large number of oc-
currences of the plaintexts in at least one column. However, this is not the case for correlated
distributions where ciphertexts that occur infrequently in one column are paired with other
ciphertexts that also occur infrequently in the other column.

4.6 Double Column, Incomplete

First, we compare the performances of each algorithm for varying amounts of error in the
auxiliary data in Figure 3. For probability estimation, there was no significant difference be-
tween assuming c0 = d0 and not (cd = d0 only performed 6% worse on average), thus we
analyse them as one attack.

Fig. 3. A bar graph showing the average v-score and r-score of each attack for varying errors (5%, 10%, 20%) in the auxiliary
data. From left to right: genetic algorithm, multi-step gradient descent, single-step gradient descent, probability estimation.
Blue = v-score, orange = r-score.

9

We see that both genetic algorithms and gradient descent outperform the probability esti-
mation LAA, since probability estimation can only make one sub-optimal guess while the other
attacks can refine their guesses over multiple iterations.

In addition, multi-step gradient descent outperforms single-step gradient descent, most
likely because the multi-step algorithm is able to make more overlapping swaps between it-
erations, making it more likely to find the global maxima. We can also see this in how much
genetic algorithms outperform single-step gradient descent. To find the number of local optima,
we start the gradient descent algorithm from a large number of random mappings and count the
number of unique mappings that result from this. Plotting how much the genetic algorithms out-
performs single-step gradient descent in v-score against the number of local optima in Figure 2
(right), we see an increasing trend. This validates our hypothesis that the poor performance of
gradient descent is caused by the algorithm getting stuck in local optima.

Furthermore, we notice that genetic algorithms provide comparable performance to multi-
step gradient descent. We hypothesise that this is because genetic algorithms are more likely
than multi-step gradient descent to find the global optima. However, gradient descent provide
more directed optimisation than genetic algorithms which optimise the guesses stochastically.

Thus, for attackers, the recommended approach is to run both the genetic algorithm LAA
and the multi-step gradient descent LAA and pick the mapping with the highest probability.

5 Conclusion

In conclusion, we have implemented on Amazon Web Services and benchmarked a struc-
tured encryption scheme for SQL databases using multimap encryption that supports both
SELECT and JOIN and is easily extendable to other types of precomputed SQL queries. Through
analysis of our leakage profile, we have shown that our scheme is more secure than past
schemes such as CryptDB [11]. We have also explored a wide variety of LAAs on our scheme
by exploring all 4 posible scenarios on information availability, including genetic algorithms
and gradient descent, and analysed their performance. Such improvements in structured en-
cryption schemes will help us to better guard against increasingly common cyberattacks on
databases and safeguard sensitive data and our online privacy. Our attacks also teach attack-
ers how to better attack such encryption schemes to maximise the information they can gain
from simply looking at the encrypted data. In the future, we could extend our work to support
even more SQL queries, such as recursive queries, and look into potential improvements of our
system to better safeguard against the LAAs mentioned in this report.

6 Acknowledgements

We would like to thank our mentors, Dr Ruth Ng and Mr Ryan Seah for their invaluable
guidance and support in the course of this project. We would also like to thank Mr Alexander
Hoover, Mr Daren Khu, Mr Ng Wei Cheng and Mr Quek Yuxuan for their support.

10

References

1. Hungarian algorithm, Oct 2022.

2. David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and Michael

Steiner. Dynamic searchable encryption in very-large databases: data structures and implementation. 14:23–26, 2014.

3. David Cash, Ruth Ng, and Adam Rivkin. Improved structured encryption for sql databases via hybrid indexing. pages

480–510, 2021.

4. Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. Advances in Cryptology-ASIACRYPT,

pages 577–594, 12 2010.

5. Valentina Ciriani, Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and Pierangela

Samarati. Keep a few: Outsourcing data while maintaining confidentiality. pages 440–455, 2009.

6. Ernesto Damiani, S De Capitani Vimercati, Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Balancing

confidentiality and efficiency in untrusted relational dbmss. pages 93–102, 2003.

7. Sergei Evdokimov and Oliver Günther. Encryption techniques for secure database outsourcing. pages 327–342, 2007.

8. Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and Thomas Ristenpart. Leakage-abuse attacks

against order-revealing encryption. In 2017 IEEE Symposium on Security and Privacy (SP), pages 655–672. IEEE, 2017.

9. Seny Kamara and Tarik Moataz. Encrypted multi-maps with computationally-secure leakage. IACR Cryptol. ePrint Arch.,

2018:978, 2018.

10. Seny Kamara and Tarik Moataz. Sql on structurally-encrypted databases. pages 149–180, 2018.

11. Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb: A practical encrypted

relational dbms. October 2011.

11

Appendix

A Structured Encryption

A.1 Basic Definitions

DATA STRUCTURES. A data type DT is a type of data structure. It defines three things:

– A set of data elements DT.DS
– A query set DT.QS
– A deterministic query evaluation algorithm defining how data is queried of the form DT.Qry :

DT.DS× DT.QS → {0, 1}∗.

STRUCTURED ENCRYPTION. A structured encryption (StE) scheme is a cryptographic primi-
tive defined for a particular data type. Given any StE scheme StE for data type DT, it should
define:

– A randomized encryption algorithm StE.Enc that takes as input a data element DS ∈ DT.DS

and returns a client state, St ∈ {0, 1}∗, and an encrypted data structure EDS ∈ {0, 1}∗.
– A search protocol StE.Srch where the client input is its state and a query q ∈ DT.QS, and the

server input is the encrypted data structure. The client output is an updated state. The server
output is an updated encrypted data structure and a ciphertext.

– A deterministic decryption algorithm StE.Dec that takes as input the client state and cipher-
text, and returns the query output.

We say that a structured encryption scheme is correct if the query output is DT.Qry(DS, q).
We say that an StE scheme is “response revealing” if the ciphertext is also equal to the query
output. Note that in this case, StE.Dec(K,C) = C for all K and C. We refer to StE schemes
where this is not the case as “response hiding”.

A.2 Multimap Encryption Scheme

In order to build our scheme for structured encryption of SQL tables, we first need to build
a scheme for multimaps to store the precomputed queries. We will adopt the multimap scheme
used by Cash et al. [2].

There are 2 different schemes for multimap encryption that we need - response hiding and
response revealing. Response hiding prevents the server from being able to access the decrypted
values while response revealing allows the server to access the decrypted values when they are
queried. In these schemes, the client has access to randomly generated keys Kf , Ks.

For response hiding, the each label l of the multimap is hashed using Kf to obtain a new
key K. For each value v in the multimap associated with l, the index i of value v is hashed with
key K. This becomes the key associated with v in the encrypted multimap. In doing so, we

12

can prevent the server from being able to know the number of values associated with label l.
Finally, we encrypt v with Ks and put it into the multimap. For decryption, the hashed label K
is sent to the server which increments i starting from 0 and generates the keys of the encrypted
multimap. The encrypted values are sent back to the client, who can decrypt them with key Ks.

For response revealing, the hashed label l with key Kf is now known as K1. A second
hashed label K2 is obtained by hashing l with key K2. Instead of encrypting the values with
Ks, they are now encrypted with key K2 which we will send to the server at decryption time.
This allows decryption to be run on the server while ensuring security of the values that were
not queried since they were encrypted with a different K2.

MULTIMAP DATA STRUCTURE The multimap data type MmDt is defined as follows:

– MmDt defines a label length MmDt.lLen and value length MmDt.vLen. These in turn define
the label set (i.e. {0, 1}MmDt.lLen) and value set (i.e. {0, 1}MmDt.vLen).

– Each data element is a multimap. A multimap M is a mapping from labels ℓ ∈ {0, 1}MmDt.lLen

to sets of values M[ℓ] ⊆ {0, 1}MmDt.vLen. In other words,

MmDt.DS = {M : ∀ℓ ∈ {0, 1}MmDt.lLen,M[ℓ] ⊆ {0, 1}MmDt.vLen}.

Note that when multimaps are initialised, all ℓ map to ⊥ so M[ℓ] = ⊥.
– The query set is MmDt.QS = {0, 1}MmDt.lLen.
– The query evaluation algorithm is defined as MmDt.Qry(M, ℓ) = M[ℓ].

MULTIMAP ENCRYPTION SCHEME We define two multimap encryption schemes, RH and RR

that are response hiding and response revealing respectively. They both make use of a function
family F and symmetric encryption SE. We will assume that RH and RR return the items in the
same order that they were inserted.

13

Alg RH.Enc(M)

Initialize empty dictionary D

Kf ←$ F.KS ; Ks←$ SE.KS

For ℓ ∈ {0, 1}MmDt.lLen do
K ← F.Ev(Kf , ℓ) ; i← 0

For v ∈M[ℓ] do
x← F.Ev(K, i) ; y ← SE.Enc(Ks, v)

D[x]← y ; i← i+ 1

End for
End for
Return ((Kf ,Ks),D)

Protocol RH.Srch
(
((Kf ,Ks), ℓ) ; D

)
K ← F.Ev(Kf , ℓ) C ← ∅ ; i← 0

Send K While D[F.Ev(K, i)] ̸= ⊥ do
C ← C ∪ {D[F.Ev(K, i)]} ; i← i+ 1

End while
Return (Kf ,Ks) Return (D, C)

Alg RH.Dec((Kf ,Ks), C)

S ← ∅
For c ∈ C do

v ← SE.Dec(Ks, c)

End for
Return S

Alg RR.Enc(M)

Initialize empty dictionary D

Kf ←$ F.KS ; Ks←$ SE.KS

For ℓ ∈ {0, 1}MmDt.lLen do
K1 ← F.Ev(Kf , ℓ) ; K2 ← F.Ev(Ks, ℓ) ; i← 0

For v ∈M[ℓ] do
x← F.Ev(K1, i) ; y ← SE.Enc(K2, v)

D[x]← y ; i← i+ 1

End for
End for
Return ((Kf ,Ks),D)

Protocol RR.Srch
(
((Kf ,Ks), ℓ) ; D

)
K1 ← F.Ev(Kf , ℓ) ; K2 ← F.Ev(Ks, ℓ) C ← ∅ ; i← 0

Send (K1,K2) While D[F.Ev(K, i)] ̸= ⊥ do
z ← D[F.Ev(K1, i)] ; C ← C ∪ {SE.Dec(K2, z)} ; i← i+ 1

End while
Return (Kf ,Ks) Return (D, C)

Fig. 4. Definitions of MME schemes RH and RR.

A.3 SQL Database Encryption Scheme

Now, let us outline our scheme for encryption of SQL databases, making use of structured
encryption of multimaps.

As previously mentioned, to ensure queries can be executed efficiently, we will fully pre-
compute all SELECT and JOIN queries on the SQL database. The precomputed queries can
be represented in the form of the multimaps shown in Figure 5. One multimap N stores the

14

Fig. 5. Diagram showing our SQL scheme

mapping from the query to the indexes of the relevant rows while another multimap M maps
each row index to the encrypted row contents in the SQL table. We store the queries and rows
separately to avoid invoking an additional memory cost by storing some rows repeatedly since
the rows will take up more space in memory than the indexes.

At the start, the client will randomly generate 4 keys (Kf1, Ks1), (Kf2, Ks2) and we define
K1 as (Kf1, Ks1) and K2 as (Kf2, Ks2). They are assigned as shown in Figure 5. After the
precomputed queries have been loaded into M and N, they are encrypted using the keys with
response hiding and response revealing respectively. Before putting in the indexes into N, they
are also hashed with K1, allowing them to be used to query M and concealing the order of rows
in the table. This ensures that the server will only have access to the hashed indexes (which it
needs obtain the encrypted rows) but will not have access to the decrypted rows.

SQL TABLE First, we define the SQL table object.

– Table defines a length for an attribute of the target column Table.xLen and a total length for
all other attributes Table.yLen.

– Each Table defines the number of attributes that can be queried Table.num.

– Each data element is a set of tuples. Within the list of tuples T, each tuple has the target
attributes xi ∈ {0, 1}Table.xLen, i ∈ [1,Table.num] as the first Table.num elements and all
other attributes as the last element y ∈ {0, 1}∗.

Table.DS = {T : T = {(x1, . . . , xTable.num, y) : x ∈ {0, 1}Table.xLen, y ∈ {0, 1}Table.yLen}}

– For a given row r of T, we define r[i] to refer to the value of attribute i stored in that row.

SQL DATABASE Now, we can define the SQL database data structure. We target queries of the
type SELECT ∗ FROM tbl1 JOIN tbl2 WHERE attr1 = attr2.

– Each data element is a tuple. The first element of the tuple is a set that contains all valid JOIN

queries. The second element of the tuple is a set of tuples where the first element is a binary
string and the second element is a table.

DbDt.DS = {DB : DB = (JC, {(i,T) : i ∈ {0, 1}∗,T ∈ Table.DS})}
– We assume there are primary keys for each table so that each row in the table is unique.

15

– The query set is {(i, q) : i ∈ [1, 2], q ∈ Qi}, where

Q1 = {(j, attr, val) : j, val ∈ {0, 1}∗, attr ∈ Z+}

Q2 = {(j1, j2, attr1, attr2) : j1, j2 ∈ {0, 1}∗, attr1, attr2 ∈ Z+}

– The query evaluation algorithm is defined in Figure 6

Alg DbDt.Qry(i, q,DB)
(JC, {(x,Tx) . . . })← DB
If i == 1 then

(j, attr, val)← q

Return {r : r[attr] = val, r ∈ Tj}
else if i == 2 then

(j, k, attr1, attr2)← q

If q /∈ JC then return ⊥
Return {r||s : r[attr1] = s[attr2], r ∈ Tj , s ∈ Tk}

End if

Fig. 6. Definition of the query algorithm

SQL DATABASE ENCRYPTION SCHEME Now, we define the encryption scheme for SQL databases
considering with queries of the following forms:

– SELECT ∗ FROM tbl WHERE attribute = VALUE

– SELECT ∗ FROM tbl1 JOIN tbl2 WHERE attr1 = attr2.
– The key for the encryption is defined as DbDt.KS = RH.KS× RR.KS.
– It makes use of the structured encryption schemes for multimaps.

16

Alg DbDt.Enc((K1,K2),DB)
{Kf ,Ks} ← K1

(JC, {(id,Tid)})← DB
For (id,Tid) ∈ DB do

For {(xi
1, . . . , x

i
Tid.num

, yi)} ∈ Tid do
M[(id, i)] = (xi

1, . . . , x
i
Tid.num

, yi)

For j ∈ 1 . . .Tid.num do
N[(id, j, xi

j)] = {F.Ev(Kf , (id, i))} || N[(id, j, xi
j)]

End for
End for

End for
For (i, j, p, q) ∈ JC do

For {(xk
1 , . . . , x

k
Ti.num, yk)} ∈ Ti, {(wl

1, . . . , w
l
Tj .num, zl)} ∈ Tj do

If xk
p = wl

q then
N[(i, j, p, q)]← {F.Ev(Kf , k))} || N[(i, j, p, q)]

N[(i, j, p, q)]← {F.Ev(Kf , l))} || N[(i, j, p, q)]

End if
End for
ED1 ← RH.Enc(K1,M)

ED2 ← RR.Enc(K2,N)

Return ED1,ED2

Protocol DbDt.Srch
(
(K1,K2), i, q ; ED1,ED2

)
(Kf ,Ks)← K1

(JC,DB1)← DB
If i = 1 then

id, attr, val← q

If (id,Tid) /∈ DB1 then
Return ⊥

End if
else if i = 2 then

If q /∈ JC then
Return ⊥

End if
End if
K ← F.Ev(Kf , q)

Send K i← 0

While ED2[F.Ev(K, i)] ̸= ⊥ do
zi ← SE.Dec(K2,ED2[F.Ev(K, i)]) ; i← i+ 1

End while
For i ∈ 1 . . . n do

ri ← ED1[zi]

End for
For j ∈ 1 . . . n do Send {r1, . . . , rn}

If i = 1 then Cj ← SE.Dec(K1, rj)

else if i = 2 then
C(j−1) mod 2 ← SE.Dec(K1, rj)

If j mod 2 = 1 then C j
2
← C0 || C1

End if
End for
Return {C1, . . . , Cn}

Fig. 7. Definition of SQL encryption scheme DbDt.

17

B Query Information

QUERY TYPE While it is not possible to be completely certain what is the type of query that is
made since the query string is hashed, it is possible to guess what type of query is made using
other information

– There are a few important differences between SELECT and JOIN queries.
– JOIN queries always return rows in pairs, thus the total number of rows returned must be

even. This is not the case for SELECT queries.
– JOIN queries will also mostly always return duplicate rows. This will happen as long as there

is more than 2 rows in the same column with the same value for the target attribute. On the
other hand, SELECT queries always return unique rows.

– Thus, by checking if the number of rows returned is even / odd and if the rows are unique,
the type of query made can be identified with a high degree of accuracy.

JOIN COLUMNS Using the number of rows returned from a JOIN query, it may be possible
guess what columns the JOIN was run on.

– Let us define vectors a and b as the auxiliary data and c and d as the ciphertext frequencies
for the first and second JOIN column respectively.

– c0 and d0 will represent the ciphertexts that did not appear in only the first or second column
respectively. We will assume we know what these values are.

– Now, let us define

N1 =
∑
i

ci, N2 =
∑
i

di

– Then, the approximate length of the JOIN query is

N =
∑
i

N1N2aibi

– If we find a JOIN query of similar length, it is probable that it correlates well with auxiliary
data a and b.

– However, in reality, the adversary may not be aware of the value of c0 and d0 but is only
aware of c0 + d0 as the other values in c and d are known and N1 +N2 is known.

– In this case, it is usually justified to assume that c0 = d0 as in real data, it is not likely that
uncommon values are heavily skewed to either column.

– In many cases, c0 and d0 might also be quite small so may also be valid to ignore them.
– Finally, if the adversary is aware of a JOIN complete query that was run previously, N1 and
N2 can be easily found so the exact value of c0 and d0 can be known.

We evaluated the accuracy of differentiating JOINs by length using the method above. We
ran the attack on the synthetic data (Appendix C) with 1 million rows and attempted to differ-

18

entiate between 10 JOINs with the same distribution. We note that in real data, the distributions
of different JOINs will likely differ and as a result, this attack will be even more accurate.

Fig. 8. A graph of the accuracy of JOIN identification against error in the auxiliary data

19

C Synthetic Data

The distributions used to generate the synthetic data are shown below. Random means that
the order of ciphertexts was shuffled and inverse means that the order of the ciphertexts was
inverted. For each pair of distributions, we generated 2 ciphertext columns from each distribu-
tion, with 1 million rows in each column. We generated a new pair of columns for each of the
following values of distinct ciphertext numbers: 10, 50, 100, 200, 500. For every combination
of (distribution, number of ciphertexts), we generated a pair of columns 10 times. Thus, all
data we report on one combination of (distribution, number of ciphertexts) will be the average
results on these 10 sets.

– Linear Distribution, Linear Distribution
– Linear Distribution, Slow Linear Distribution
– Linear Distribution, Inverse Linear Distribution
– Linear Distribution, Random Linear Distribution
– Zipfian Distribution, Linear Distribution
– Zipfian Distribution, Zipfian Distribution
– Zipfian Distribution, Inverse Zipfian Distribution
– Zipfian Distribution, Random Zipfian Distribution

The equations for the various distributions are shown below. n = 1000000 is the size of the
distribution, i.e. the total number of rows.

– Linear:
{

2i
n(n+1)

}
– Slow Linear:

{
1
2n

+ i
n(n+1)

}
– Zipfian:

{
1/i∑n

k=1 1/k

}
To generate ciphertexts (and therefore their frequencies), we fixed n = 1000000, the num-

ber of rows to generate, then sampled n values from the probability distribution.
To generate the auxiliary probability distributions, we took the corresponding ciphertext

distribution and introduced percentage errors of e = 5, 10 and 20. Specifically, for each prob-
ability x in a distribution, we scaled it to a random value between (1 − e

100
)x and (1 + e

100
)x,

then normalised the distribution to sum to 1. e represents the degree of random noise between
the auxiliary data and ciphertexts, which corresponds to the variances in real-world data.

For Single Column, Incomplete, we simply looked at the pairs of columns as 2 individual
columns.

20

D Leakage Abuse Attacks

D.1 Frequency Analysis

DESCRIPTION

– For this attack, we define the ciphertext frequencies as vector c and the auxiliary data as
vector a. We take the auxiliary data ai to mean that every ciphertext has a probability ai of
being associated with plaintext i.

– Now, we seek find a mapping f of plaintexts to ciphertexts that has the highest probability

Pr[f] =
∏
i

a
cf(i)
i

– To optimise this probability, we sort a and c by value and pair them up accordingly such that
the highest value in a is paired with the highest value in c, the 2nd highest value in a is paired
with the 2nd highest value in c and so on.

– Since sorting is O(n log n), the time-complexity of this algorithm is also O(n log n). The
pseudocode for this attack can be found in Figure 13.

– However, this attack requires that c is known. Thus, all possible SELECT queries on one
column must have been run on only that column. In addition, there should be only 1 table so
that this condition can be verified.

PROOF OF OPTIMALITY We use an exchange argument to prove the optimality of frequency
analysis. Assume there are 2 plaintexts ai ≥ aj and 2 ciphertexts ck ≥ cl, such that f(i) = l

and f(j) = k. Let P = Pr[f]. Consider a mapping f ′ that is identical to f , except f ′(i) = k

and f ′(j) = l. Then

Pr[f ′] = P ×
acki × aclj
acli × ackj

= P × ai
aj

ck−cl
> P

Thus, while there is such a “mismatch”, we should perform a swap. Since there can only be at
most N(N−1)

2
mismatches initially, and every such swap reduces the number of mismatches by

at least 1, there exists a finite sequences of swaps for every initial mapping f ′ to the algorithm’s
mapping f . Since Pr[f] > Pr[f ′] for every f ′, the algorithm is optimal. ■

D.2 Dynamic Programming

Note that the probability of a mapping is

Pr[f] =

∑
f(i)=0

ai

c0

×
∏

f(i)̸=0

a
cf(i)
i

First, we preprocess the input, {a1..an} and {c0..cm}. We define b = sorted({a1..an}) and d =

{c0, sorted({c1..cm})}. Now, we consider the new mapping from plaintexts in b to ciphertexts
21

in d. We claim that in the optimal mapping f , either f(n) = m or f(n) = 0. Assume otherwise,
that f(n) = i, 0 < i < m. Let x be such that f(x) = m. Because the arrays are sorted and
Pr[f] is defined similarly, we can apply the same exchange argument from frequency analysis
(Appendix D.1) here. Thus, Pr[f(n) = m] > Pr[f(n) = i], so we only need to consider
f(n) = m or f(n) = 0. Then, we can remove bn (and dm if f(n) = m) from consideration,
and repeat the same process on f(n−1). Due to this self-similar nature, we can thus define this
as a Dynamic Programming problem, and solve it recursively. The base case would be when all
ciphertexts have been mapped, in which we map all remaining plaintexts to d0.

The state of the Dynamic Programming is dp(x, y, δ), which returns a tuple (f,Pr[f]),
where f : {1..x} 7→ {0..y} is a mapping of the first x plaintexts onto the first y ciphertexts and
d0, and δ = the sum of all previous ai which was mapped to d0. The answer we seek is then
dp(n,m, 0). For the transition, refer to the pseudocode in Appendix D.8. For our implementa-
tion, due to the probabilities being very small, we applied log to it during all our calculations.
To reduce memory usage and speed up computation, we used a slightly different implemen-
tation: instead of storing and returning the probability every time, we maintained the optimal
f(n) mapping and used backtracking to reconstruct f afterwards.

Note that in order for this attack to work, δ needs to be discretised to a terminating decimal,
because the attack relies on δ repeating and thus saving computation space. If, for example,
no 2 subsets of ai have the same sum, this attack would be identical to brute forcing all 2n

mappings.

D.3 Graph Matching

CIPHERTEXT FREQUENCIES Before running the attack, we need to convert the returned pairs
into ciphertext frequencies.

– To do this, we first initialise 2 lists of sets, A and B.
– When we encounter a new pair (x, y) where x and y are not found in any set in A or B, a new

set is created in A and B and x and y are added to the new sets.
– If the new pair (x, y) has only either x or y element not in A or B, then the missing element

is added to the corresponding set.
– This is done until all pairs have been looped through. The ciphertext frequencies c, d can thus

be obtained by counting the number of elements in each set in A and B.

22

Alg PairsToFrequencies((x1, y1), (x2, y2), . . . , (xn, yn))

For i ∈ [1, n] do
C ← 0

For j ∈ [1, |A|] do
If xi ∈ Aj ∩ yi /∈ Bj do

C ← 1

Bj = Bj ∪ {yi}
Break

Else if xi /∈ Aj ∩ yi ∈ Aj do
Aj = Aj ∪ {xi}
C ← 1

Break
End if

End for
If C == 0

A = A ∥ [{xi}]
B = B ∥ [{yi}]

End if
Return {|Ai| : i ∈ [1, |A|]}

Fig. 9. Pseudocode for the algorithm to convert pairs to frequencies

GRAPH MATCHING Now, we will describe the attack. The idea is to convert this problem into
that of optimising the sum of edge weights in a bipartite graph which can be solved using the
Hungarian algorithm.

– In this attack, the probability of a given mapping f of plaintexts to ciphertexts is

Pr[f] =
∏
i

a
cf(i)
i b

df(i)
i

– Taking the log of this probability, we can obtain

Pr[f] =
∑
i

cf(i) log ai + df(i) log bi

– To solve this problem, we present the mapping as a complete bipartite graph with 2N nodes.
We define the weights between nodes i, j of the graph as

wij = cj log ai + dj log bi

– Then, finding the mapping with the high probability then becomes finding a matching (an
example shown below) in the bipartite graph with the greatest sum of edge weights.

– This is a well known problem and can be solved by the Hungariam Algorithm.

23

Fig. 10. A possible bipartite graph mapping

D.4 Partition Optimisation Algorithm

In this algorithm, we have two arrays of non-negative integers of length n, a and b. There
are also 2 positive integers c and d. The partition optimisation algorithm seeks to find a set R
of {1 to n} such that the following is optimised.

Sc
1S

d
2 =

(∑
i∈R

ai

)c(∑
i/∈R

bi

)d

– Notice that the only thing that matters is the value of S1 and S2 and not which integers make
up S1 and S2. Thus, in the worst case, we only need to search (L+ 1)2 states.

– Thus, we will consider L+1 by L+1 grid and mark (0, 0) at the start. Now, we iterate through
i from 1 to n and consider every marked square (x, y) and mark (x + ai, y) and (x, y + bi),
then unmark (x, y). We also keep track of where (x + ai, y) and (x, y + bi) came from by
keeping track of path[(x+ai, y)] = path[(x, y)]+A, and path[(x, y+bi)] = path[(x, y)]+B.

– After this, we can just look at every marked square (x, y) and find the square with the largest
xcyd and look at its path to reconstruct R.This algorithm runs in O(nL2) time and memory.

– However, we notice that for some i, if we have 2 marked squares (x, y) and (x′, y′) such that
x > x′ and y > y′, we will never need to consider (x′, y′) as no matter what we do after this
i, since using (x, y) will always result in a greater Sc

1S
d
2 .

– Therefore, instead of a L + 1 by L + 1 grid, we only need L + 1 rows and 1 column (call
this new grid G), where G[x] = the marked square (x, y) with largest y. Then, at each i, we
consider for each x, (x + ai, G[x]) or (x,G[x] + bi). Then, we compare (x + ai, G[x + ai])

and (x + ai, G[x]) and set G[x + ai] to the largest of those. Similar thing for (x,G[x] + bi),
and for the path.

24

D.5 Probability Estimation

Here is a more detailed explanation of the calculation of Pr[plaintext i is in Y].

Pr[i] = Pr[plaintext i appears in exactly one column] + Pr[plaintext i appears in neither column]

=
((
1− (1− ai)

N1
)
(1− bi)

N2 + (1− ai)
N1
(
1− (1− bi)

N2
))

+
(
(1− ai)

N1(1− bi)
N2
)

=
(
(1− ai)

N1 + (1− bi)
N2 − 2(1− ai)

N1(1− bi)
N2
)
+
(
(1− ai)

N1(1− bi)
N2
)

= (1− ai)
N1 + (1− bi)

N2 − (1− ai)
N1(1− bi)

N2

D.6 Gradient Descent

1. To get our initial guess, we assume every ciphertext found only in column 1 or found only
in column 2 occurs the same number of times. We can then run the graph matching attack to
find our initial mapping.

2. We can then proceed to try all possible swaps between X and Y and take the swap that results
in the greatest improvement in the probability.

3. The Hungarian algorithm and Partition Optimisation algorithm are then re-run to obtain the
new optimal mapping within X and Y.

4. This is done until no further improvement in the probability can be found.
5. We also formulate a variant of this single-step attack called “multi-step” gradient descent.

Instead of making testing only 1 swap each time, we allow the algorithm to make multiple
non-overlapping swaps. This is done using a modified Hungarian algorithm.

MODIFIED HUNGARIAN ALGORITHM The input to the Hungarian Algorithm is the following
matrix where rij refers to the probability improvement obtained by swapping i and j.

−∞ . . . −∞ 0 . . . 0
...

...
−∞ . . . −∞ 0 . . . 0
rij . . . rij −∞ . . . −∞

...
...

rij . . . rij −∞ . . . −∞

Fig. 11. Matrix to be solved by the modified Hungarian algorithm to make multiple non-overlapping swaps

D.7 Genetic Algorithm

1. We start by randomly generating a large number of possible X and Y . We call this our
population, similar to a population of animals. We can then sort the list of possible subsets
by their probability.

25

2. Now, to construct a new population, we randomly pick k subsets from the old population
and the one with the highest probability is selected. This simulates survival of the fittest
as subsets with a lower probability are less likely to be picked. We then make a random
number of swaps between X and Y to simulate genetic mutations. These mutations help the
algorithm to jump over local optima to find the global one.

3. 80% of the new population is filled this way. Another 10% is filled with the top 10% of the
old population and the other 10% are random subsets in order to increase diversity.

4. We will repeat this process multiple times until the best probability no longer changes or we
have exceeded a maximum number of iterations.

D.8 Pseudocode

Alg DPLAA({b1..bn}, {d0..dm})
Initialise D,P, f
DP(n,m, 0)

f(1 ≤ i ≤ n), δ ← 0, 0

While P[n,m, δ] ̸= ⊥ do
If P[n,m, δ] == (n− 1,m− 1, δ), f(n) = m

(n,m, δ)← P[n,m, δ]

End while
Return f

Alg DP(n,m, δ)

If D[n,m, δ] ̸= ⊥
Return D[n,m, δ]

Else if n < m

Return 0
Else if m == 0

Return
(
δ +

∑n
i=1 bi

)d0
Else

p1 ← DP(n− 1,m− 1, δ)× bdmn
p2 ← DP(n− 1,m, δ + bn)

If p1 ≥ p2
P[n,m, δ]← (n− 1,m− 1, δ)

Return D[n,m, δ]← p1
Else

P[n,m, δ]← (n− 1,m, δ + bn)

Return D[n,m, δ]← p2
End if

End if

Fig. 12. Pseudocode for Dynamic Programming LAA

26

Alg ProbabilityEstimation(a, b, c, d)

Initialise list L = [1 . . . n]

Sort L by descending Pr[i]

a′, b′, c′, d′ ← a, b, c, d without top n−m plaintexts in L
f ← GraphMatching(a′, b′, c′, d′)

a′′, b′′ ← a, b with only top n−m plaintexts in L
R← PartitionOptimisation(a′′, b′′, c0, d0)

f(i)← m+ 1 for i ∈ R

f(i)← m+ 2 for i /∈ R ∩ i ∈ {L0,L1, . . . ,Ln−m}
Return f

Alg FrequencyAnalysis(a, c)

b = Sort({(i, ai) : i ∈ [1, |a|]})
d = Sort({(j, cj) : j ∈ [1, |c|]})
For k ∈ [1, |c|] do

(i, ai)← b

(j, cj)← d

f(i)← j

End for
Return f

Alg GraphMatching(a, b, c, d)

Initialise matrix W
Wij ← cj log ai + dj log bi
Return HungarianAlgorithm(W)

Fig. 13. Pseudocode for, probability estimation (left), frequency analysis (top right) and graph matching (bottom right)

Alg Fitness(a, b, c, d, (X,Y))

a′, b′, c′, d′ ← a, b, c, d with only plaintext i where i ∈ X
f ← GraphMatching(a′, b′, c′, d′)

a′′, b′′ ← a, b with only plaintext i where i ∈ Y
R← PartitionOptimisation(a′′, b′′, c0, d0)

f(i)← m+ 1 for i ∈ R

f(i)← m+ 2 for i /∈ R ∩ i ∈ Y
Return f

Alg TournamentSelection(k, n)

Return min(RandomInteger(1 . . . n), i ∈ [1, k])

Alg Mutate((X,Y))

C←$ RandomInteger(1 . . . 5)

Swap C elements between X and Y
Return (X,Y)

Alg GeneticAlgorithm(a, b, c, d)

Initialise P with p random subsets of plaintexts not in the JOIN

For i ∈ [1, g] do
F = Pr[Fitness(a, b, c, d,Pi)] : i ∈ [1, p]

Sort F by descending fitness
P′ ← {Mutate(Pi) : i←$ TournamentSelection(k, p), j ∈ [1, 4p

5
]}

P′ ← P′ ∪ {Pi : i ∈ [1, p
10
]}

Add p
10

random subsets to P′

End for
Return Fitness(a, b, c, d,P0)

Fig. 14. Pseudocode for genetic algorithm

27

Alg GradientDescent(a, b, c, d)

Initialise mapping f with buckets X and Y
While true do

If multistep
Compute matrix M

If no possible score improvement
Return f

Else
Make swaps according to HungarianAlgorithm(M)

End if
Else

For i ∈ X, j ∈ Y do
sij ← score improvement from swapping plaintext i and j

End for
(i′, j′)← argmax

i∈X,j∈Y
sij

If si′j′ < 0

Return f

Else
Swap i and j

End if
End if
a′, b′, c′, d′ ← a, b, c, d with only plaintext i where i ∈ X
f ← GraphMatching(a′, b′, c′, d′)

a′′, b′′ ← a, b with only plaintext i where i ∈ Y
R← PartitionOptimisation(a′′, b′′, c0, d0)

f(i)← m+ 1 for i ∈ R

f(i)← m+ 2 for i /∈ R ∩ i ∈ Y
End while

Fig. 15. Pseudocode for gradient descent

28

E Results

E.1 Score Calculation

Consider the function E(x, y) that returns 1 if x = y and 0 otherwise. The formula for score
calculation are as below.

Single Column Double Column
Complete v = 1

n

∑
i E(Ai, Cf(i)) v = 1

n

∑
iE(Ai, Cf(i))

r = 1
N

∑
i E(Ai, Cf(i))× cf(i) r =

∑
i E(Ai,Cf(i))×cf(i)df(i)∑

i>0 cidi

Incomplete v = 1
m

∑
i E(Ai, Cf(i)) v = 1

n

∑
f(i)≤m E(Ai, Cf(i))

r = 1
N

∑
f(i)̸=0 E(Ai, Cf(i))× cf(i) r =

∑
f(i)≤m E(Ai,Cf(i))×cf(i)df(i)∑

i>0 cidi

E.2 Single Column, Complete

Column Name v-score r-score

First name 0.000239 0.0846

Last name 0.0000489 0.019

Gender (Ohio) 1.00 1.00

Race (Ohio) 0.167 0.123

Age in years at admission 0.344 0.318

Neonatal age (first 28 days after birth) indicator 1.00 1.00

Admission month 0.769 0.758

Admission day is a weekend 1.00 1.00

Died during hospitalization 1.00 1.00

DRG in effect on discharge date 0.0367 0.256

MDC in effect on discharge date 0.769 0.979

ICD-10-CM Diagnosis 1 0.00197 0.223

Number of days from admission to I10 PR1 0.222 0.997

Gender (HCUP) 1.00 1.00

Race (HCUP) 1.00 1.00

Table 3. Single Column, Complete

29

E.3 Single Column, Incomplete

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin

10 1.0 1.0 0.783 0.639 0.578 0.44

50 0.693 0.572 0.348 0.253 0.203 0.137

100 0.319 0.343 0.158 0.153 0.087 0.073

200 0.056 0.068 0.055 0.069 0.042 0.051

500 0.011 0.02 0.011 0.019 0.007 0.011

slin

10 0.989 0.989 0.622 0.549 0.2 0.129

50 0.338 0.333 0.136 0.144 0.053 0.048

100 0.244 0.248 0.122 0.104 0.046 0.051

200 0.1 0.1 0.076 0.081 0.038 0.039

500 0.026 0.028 0.02 0.023 0.014 0.015

zipf

10 1.0 1.0 1.0 1.0 0.42 0.68

50 0.383 0.776 0.313 0.704 0.164 0.481

100 0.19 0.659 0.15 0.598 0.074 0.397

200 0.093 0.581 0.071 0.514 0.047 0.38

500 Too many states, insufficient memory, omitted

Table 4. Single Column, Incomplete

30

E.4 Double Column, Complete

e = the percentage error introduced when generating auxiliary data

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.98 0.953 0.92 0.857

50 0.782 0.608 0.546 0.333 0.308 0.161

100 0.488 0.272 0.312 0.156 0.182 0.073

200 0.289 0.119 0.176 0.064 0.109 0.0371

500 0.108 0.0524 0.066 0.0286 0.0472 0.0144

lin− slin

10 1.0 1.0 0.98 0.965 0.86 0.792

50 0.676 0.508 0.47 0.337 0.244 0.135

100 0.395 0.211 0.258 0.138 0.141 0.0682

200 0.227 0.129 0.138 0.0696 0.0695 0.0285

500 0.0704 0.0407 0.0548 0.0243 0.0352 0.0162

lin− invlin

10 1.0 1.0 1.0 1.0 0.96 0.95

50 0.924 0.9 0.684 0.598 0.428 0.329

100 0.617 0.522 0.385 0.276 0.226 0.153

200 0.294 0.21 0.201 0.135 0.11 0.064

500 0.112 0.0846 0.0772 0.048 0.0434 0.0246

lin− randlin

10 1.0 1.0 1.0 1.0 0.96 0.927

50 0.992 0.992 0.914 0.887 0.692 0.593

100 0.937 0.88 0.819 0.681 0.525 0.323

200 0.874 0.816 0.644 0.49 0.332 0.172

500 0.667 0.517 0.393 0.22 0.178 0.0612

Table 5a. Double Column, Complete, Part 1

31

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 0.98 0.98 0.91 0.91

50 0.746 0.746 0.466 0.466 0.272 0.272

100 0.484 0.484 0.292 0.292 0.163 0.163

200 0.287 0.288 0.158 0.159 0.1 0.101

500 0.113 0.113 0.0802 0.0801 0.0408 0.0407

zipf − zipf

10 1.0 1.0 1.0 1.0 0.86 0.984

50 0.804 0.995 0.556 0.983 0.338 0.95

100 0.503 0.99 0.32 0.975 0.198 0.946

200 0.294 0.986 0.188 0.971 0.116 0.945

500 0.129 0.984 0.0902 0.97 0.0526 0.941

zipf − randzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 1.0 1.0 0.928 0.977 0.696 0.906

100 0.957 0.993 0.821 0.961 0.509 0.871

200 0.855 0.986 0.643 0.954 0.33 0.824

500 0.561 0.965 0.382 0.934 0.185 0.863

zipf − invzipf

10 1.0 1.0 1.0 1.0 0.92 0.946

50 0.894 0.951 0.672 0.837 0.374 0.636

100 0.658 0.847 0.436 0.711 0.239 0.552

200 0.384 0.723 0.252 0.613 0.142 0.476

500 0.19 0.617 0.11 0.501 0.063 0.41

Table 5b. Double Column, Complete, Part 2

32

E.5 Double Column, Incomplete, Probability Estimation

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.831 0.631 0.664 0.491

50 0.531 0.545 0.36 0.318 0.17 0.0963

100 0.362 0.261 0.163 0.0976 0.102 0.0712

200 0.236 0.116 0.137 0.0569 0.0923 0.0362

500 0.0865 0.0292 0.0514 0.0162 0.0352 0.00924

lin− slin

10 1.0 1.0 0.731 0.599 0.731 0.599

50 0.458 0.429 0.32 0.245 0.15 0.0712

100 0.305 0.225 0.195 0.111 0.102 0.0572

200 0.192 0.109 0.0978 0.0457 0.0711 0.0352

500 0.0593 0.0287 0.0397 0.0145 0.0266 0.0109

lin− invlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.399 0.4 0.377 0.383 0.302 0.288

100 0.349 0.362 0.277 0.289 0.24 0.239

200 0.129 0.133 0.207 0.203 0.185 0.186

500 0.0706 0.0683 0.0786 0.0771 0.0854 0.0821

lin− randlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.695 0.798 0.678 0.744 0.568 0.527

100 0.765 0.846 0.794 0.786 0.563 0.441

200 0.715 0.744 0.576 0.52 0.362 0.276

500 0.463 0.487 0.325 0.273 0.164 0.112

Table 6a. Double Column, Incomplete, Probability Estimation, Part 1

33

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 1.0 1.0 0.75 0.75

50 0.512 0.535 0.5 0.516 0.308 0.312

100 0.171 0.165 0.187 0.182 0.171 0.163

200 0.23 0.243 0.171 0.171 0.135 0.127

500 0.105 0.105 0.09 0.089 0.0571 0.0531

zipf − zipf

10 1.0 1.0 1.0 1.0 0.6 0.928

50 0.578 0.988 0.39 0.973 0.228 0.896

100 0.422 0.981 0.234 0.96 0.145 0.837

200 0.231 0.974 0.137 0.961 0.0818 0.865

500 0.126 0.98 0.0748 0.966 0.0412 0.879

zipf − randzipf

10 1.0 1.0 1.0 1.0 0.925 0.976

50 0.682 0.878 0.724 0.905 0.635 0.846

100 0.704 0.931 0.672 0.924 0.584 0.896

200 0.557 0.894 0.485 0.881 0.318 0.743

500 0.447 0.927 0.358 0.915 0.228 0.849

zipf − invzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.448 0.697 0.49 0.702 0.515 0.699

100 0.443 0.715 0.436 0.704 0.324 0.568

200 0.27 0.611 0.251 0.587 0.168 0.437

500 0.13 0.526 0.108 0.476 0.0741 0.37

Table 6b. Double Column, Incomplete, Probability Estimation, Part 2

34

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.831 0.631 0.664 0.491

50 0.456 0.53 0.336 0.312 0.174 0.0977

100 0.335 0.258 0.166 0.0988 0.0908 0.0704

200 0.221 0.115 0.136 0.0569 0.0866 0.0362

500 0.0845 0.0292 0.0478 0.0164 0.0348 0.00941

lin− slin

10 1.0 1.0 0.731 0.599 0.731 0.599

50 0.4 0.417 0.298 0.241 0.148 0.0717

100 0.287 0.223 0.182 0.112 0.0952 0.0579

200 0.165 0.107 0.0921 0.0456 0.07 0.0351

500 0.0571 0.0283 0.0393 0.0146 0.0264 0.011

lin− invlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.211 0.203 0.296 0.292 0.228 0.21

100 0.118 0.118 0.243 0.242 0.243 0.234

200 0.181 0.17 0.173 0.172 0.163 0.161

500 0.0528 0.0485 0.07 0.0673 0.0818 0.0785

lin− randlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.605 0.744 0.673 0.736 0.572 0.519

100 0.734 0.821 0.783 0.772 0.563 0.441

200 0.701 0.741 0.576 0.52 0.357 0.273

500 0.412 0.448 0.307 0.269 0.159 0.11

Table 7a. Double Column, Incomplete, Probability Estimation c0 = d0, Part 1

35

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 1.0 1.0 0.75 0.75

50 0.459 0.479 0.452 0.471 0.327 0.332

100 0.225 0.233 0.2 0.201 0.176 0.164

200 0.165 0.174 0.148 0.146 0.12 0.116

500 0.11 0.113 0.0935 0.0934 0.0546 0.0519

zipf − zipf

10 1.0 1.0 1.0 1.0 0.6 0.928

50 0.512 0.979 0.393 0.962 0.235 0.894

100 0.379 0.977 0.227 0.959 0.144 0.837

200 0.236 0.974 0.142 0.962 0.084 0.865

500 0.123 0.98 0.0743 0.966 0.0427 0.879

zipf − randzipf

10 1.0 1.0 1.0 1.0 0.925 0.976

50 0.646 0.84 0.663 0.859 0.61 0.835

100 0.653 0.91 0.663 0.913 0.572 0.889

200 0.514 0.881 0.447 0.855 0.311 0.741

500 0.405 0.92 0.354 0.91 0.226 0.848

zipf − invzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.483 0.709 0.539 0.744 0.518 0.702

100 0.456 0.722 0.426 0.7 0.312 0.564

200 0.203 0.565 0.208 0.559 0.154 0.433

500 0.128 0.518 0.107 0.476 0.0748 0.372

Table 7b. Double Column, Incomplete, Probability Estimation c0 = d0, Part 2

36

E.6 Double Column, Incomplete, Gradient Descent

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.831 0.631 0.664 0.491

50 0.752 0.572 0.486 0.323 0.268 0.0949

100 0.506 0.271 0.303 0.103 0.178 0.0731

200 0.284 0.116 0.162 0.057 0.104 0.0361

500 Omitted due to long runtime

lin− slin

10 1.0 1.0 0.731 0.599 0.731 0.599

50 0.65 0.459 0.433 0.251 0.227 0.071

100 0.422 0.233 0.262 0.114 0.149 0.0583

200 0.202 0.109 0.107 0.0469 0.0801 0.0361

500 Omitted due to long runtime

lin− invlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.439 0.447 0.421 0.428 0.734 0.718

100 0.522 0.539 0.377 0.372 0.427 0.428

200 0.193 0.194 0.196 0.188 0.123 0.129

500 Omitted due to long runtime

lin− randlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.906 0.96 0.876 0.907 0.669 0.617

100 0.752 0.866 0.706 0.785 0.47 0.433

200 0.627 0.74 0.466 0.502 0.26 0.254

500 Omitted due to long runtime

Table 8a. Double Column, Incomplete, Single-step Gradient Descent, Part 1

37

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 1.0 1.0 0.75 0.75

50 0.791 0.782 0.667 0.651 0.426 0.393

100 0.47 0.468 0.335 0.327 0.231 0.211

200 0.247 0.251 0.179 0.175 0.116 0.111

500 Omitted due to long runtime

zipf − zipf

10 1.0 1.0 1.0 1.0 0.6 0.928

50 0.767 0.993 0.425 0.975 0.293 0.899

100 0.518 0.986 0.28 0.96 0.19 0.865

200 0.307 0.984 0.165 0.962 0.101 0.866

500 Omitted due to long runtime

zipf − randzipf

10 1.0 1.0 1.0 1.0 0.925 0.976

50 0.956 0.963 0.902 0.951 0.744 0.897

100 0.926 0.99 0.843 0.978 0.641 0.924

200 0.689 0.931 0.572 0.898 0.34 0.742

500 Omitted due to long runtime

zipf − invzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.991 0.998 0.892 0.946 0.647 0.773

100 0.699 0.867 0.517 0.757 0.346 0.573

200 0.328 0.631 0.262 0.569 0.178 0.442

500 Omitted due to long runtime

Table 8b. Double Column, Incomplete, Single-step Gradient Descent, Part 2

38

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.831 0.631 0.664 0.491

50 0.754 0.572 0.488 0.323 0.271 0.0949

100 0.523 0.271 0.318 0.103 0.199 0.0733

200 0.317 0.116 0.195 0.057 0.119 0.0362

500 0.0857 0.029 0.0446 0.0163 0.0297 0.00926

lin− slin

10 1.0 1.0 0.731 0.599 0.731 0.599

50 0.65 0.459 0.433 0.251 0.23 0.071

100 0.436 0.233 0.277 0.114 0.156 0.0583

200 0.265 0.111 0.145 0.0472 0.0999 0.0357

500 0.0665 0.0289 0.0458 0.0146 0.0313 0.0109

lin− invlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.809 0.8 0.88 0.872 0.83 0.81

100 0.562 0.544 0.526 0.501 0.53 0.503

200 0.372 0.332 0.337 0.306 0.312 0.283

500 0.088 0.0935 0.0788 0.0847 0.0752 0.08

lin− randlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.953 0.963 0.893 0.877 0.764 0.649

100 0.871 0.868 0.813 0.789 0.562 0.441

200 0.759 0.758 0.626 0.531 0.401 0.276

500 0.532 0.545 0.36 0.293 0.189 0.122

Table 9a. Double Column, Incomplete, Multi-step Gradient Descent, Part 1

39

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 1.0 1.0 0.75 0.75

50 0.66 0.65 0.573 0.558 0.385 0.354

100 0.478 0.455 0.373 0.342 0.232 0.2

200 0.293 0.285 0.217 0.198 0.138 0.123

500 0.0923 0.0893 0.0735 0.0678 0.0582 0.056

zipf − zipf

10 1.0 1.0 1.0 1.0 0.6 0.928

50 0.767 0.993 0.412 0.975 0.295 0.9

100 0.527 0.986 0.294 0.96 0.187 0.865

200 0.333 0.984 0.18 0.962 0.11 0.866

500 0.137 0.986 0.0735 0.967 0.0434 0.882

zipf − randzipf

10 1.0 1.0 1.0 1.0 0.925 0.976

50 0.998 1.0 0.933 0.986 0.751 0.899

100 0.957 0.997 0.856 0.978 0.662 0.929

200 0.809 0.971 0.665 0.931 0.386 0.758

500 0.376 0.876 0.299 0.866 0.187 0.809

zipf − invzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.991 0.998 0.892 0.946 0.64 0.767

100 0.783 0.901 0.584 0.797 0.377 0.585

200 0.389 0.696 0.296 0.638 0.178 0.432

500 0.147 0.516 0.114 0.472 0.0723 0.374

Table 9b. Double Column, Incomplete, Multi-step Gradient Descent, Part 2

40

E.7 Double Column, Incomplete, Genetic Algorithm

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− lin

10 1.0 1.0 0.831 0.631 0.664 0.491

50 0.704 0.571 0.447 0.323 0.238 0.0958

100 0.39 0.267 0.215 0.107 0.136 0.0732

200 0.236 0.115 0.127 0.0562 0.0939 0.0381

500 0.0883 0.0294 0.0545 0.0163 0.037 0.00921

lin− slin

10 1.0 1.0 0.731 0.599 0.731 0.599

50 0.621 0.459 0.404 0.251 0.218 0.0709

100 0.315 0.215 0.201 0.114 0.116 0.0578

200 0.159 0.104 0.0904 0.0454 0.0672 0.035

500 0.0608 0.0299 0.0356 0.0142 0.0284 0.0103

lin− invlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.924 0.978 0.946 0.965 0.857 0.87

100 0.528 0.576 0.517 0.547 0.385 0.416

200 0.333 0.328 0.295 0.297 0.257 0.259

500 0.119 0.111 0.114 0.105 0.111 0.103

lin− randlin

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.954 0.999 0.891 0.909 0.76 0.671

100 0.859 0.879 0.804 0.789 0.572 0.446

200 0.759 0.761 0.627 0.542 0.393 0.278

500 0.571 0.553 0.383 0.295 0.187 0.123

Table 10a. Double Column, Incomplete, Genetic Algorithm, Part 1

41

Number of distinct
ciphertexts

e = 5 e = 10 e = 20

v-score r-score v-score r-score v-score r-score

lin− zipf

10 1.0 1.0 1.0 1.0 0.75 0.75

50 0.823 0.84 0.694 0.701 0.43 0.413

100 0.469 0.48 0.429 0.435 0.247 0.235

200 0.323 0.341 0.228 0.231 0.157 0.152

500 0.127 0.128 0.108 0.105 0.0645 0.0615

zipf − zipf

10 1.0 1.0 1.0 1.0 0.6 0.928

50 0.738 0.993 0.404 0.975 0.291 0.9

100 0.42 0.982 0.263 0.96 0.173 0.864

200 0.29 0.983 0.147 0.962 0.0924 0.866

500 0.137 0.986 0.0763 0.967 0.0482 0.882

zipf − randzipf

10 1.0 1.0 1.0 1.0 0.925 0.976

50 0.963 0.994 0.898 0.983 0.723 0.896

100 0.874 0.993 0.766 0.964 0.629 0.924

200 0.706 0.962 0.575 0.92 0.372 0.761

500 0.52 0.955 0.399 0.934 0.232 0.855

zipf − invzipf

10 1.0 1.0 1.0 1.0 1.0 1.0

50 0.884 0.956 0.865 0.944 0.644 0.781

100 0.604 0.822 0.521 0.775 0.361 0.579

200 0.403 0.731 0.309 0.658 0.186 0.454

500 0.183 0.607 0.127 0.502 0.0789 0.386

Table 10b. Double Column, Incomplete, Genetic Algorithm, Part 2

42

	REAL-WORLD IMPLEMENTATION AND SECURITY ANALYSIS OF STRUCTURED ENCRYPTION ON AMAZON WEB SERVICES

